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1. INTRODUCTION

Increasingly there is a need to more accurately predict the viscous

resistance on ship hulls, particularly in light of modern-day fuel

costs. The rapid increase in fuel costs cries out as a mandate

to ship-hull designers to reduce hull resistance, both wave-making

and viscous. Experience has shown that significant advances in

design efficency often require more sophisticated design tools,

and in today's environment, particularly those of the computational

variety.

Airplane and missile designers have had a great deal of success in

developing and utilizing the concept of the "numerical wind tunnel".

As both computational algorithms and accurate engineering sets of

equations describing turbulent fluctuations and stresses have been

developed and improved, so has the ability to replace expensive

wind-tunnel tests by a series of computer runs. In addition to

being relatively inexpensive, such numerical simulations can more

exactly simulate full-scale flow conditions than can wind-tunnel

tests.

In the ship context there is just as pressing a need to replace

expensive tests by numerical simulations. In fact, in light of the

inherent contradiction involved in trying to simultaneously match

Froude and Reynolds numbers, then is an even more pressing need to

utilize the "numerical towing tank" in the design process.

The state of the art of numerical simulations, including viscous

effects, is further advanced in the aerodynamic context then it is

in the hydrodynamic case. Conceptually this is sensible as the

flow past a ship hull involves a free surface and is inherently

three dimensional while, by contrast, much of the flow area over

an airplane wing involves a homogeneous fluid and can be treated

as two dimensional. This two dimensionality has been of especial

value to aerodynamicists as they have been able to Justify focusing

on two-dimensional flows. A great deal of progress in improving

computational efficiency has been made because of the relative

SC Q -1-



simplicity of a two-dimensional computation, progress which would

have been much harder to achieve if the aerodynamicist's primary

application had demanded focusing on three dimensionality. As a

result, computing separated flows can be done today1 at less than
2

a percent of the cost seven or eight years ago . And, of course,

these methods are now being implemented in three dimensions.

* Even in three dimensions the aerodynamicist has an easier time of

it than the hydrodynamicist because he needn't deal with a free

surface. Nevertheless, the day of the numerical towing tank draws

nearer and nearer. The purpose of this project has been to help

• in hastening the arrival of the numerical towing tank.

To accomplish this end, we have addressed the viscous portion of

the problem. We have applied a widely-tested two-equation model

• of turbulence (Section 2) to (a) real ship hulls and (b) "thick"

turbulent boundary layers on submerged axisymmetric bodies. The

object of the ship-hull computations has been to test the model's

accuracy in the limit of classical "thin-shear-layer" approximations.

* The latter computations have been done as an attempt to pinpoint

the special characteristics of and to test the model for "thick"

boundary layers.

In performing the analysis we have developed a new three-dimensional

boundary-layer program appropriate to arbitrary ship hulls. A great

deal of the effort in this project focused on devising an accurate

numerical procedure compatible with the turbulence model equations.

Section 3 presents details of the algorithm including a detailed

accuracy study.

In Section 4 we present results of the two ship-hull computations,

including comparison of computed and measured flow properties.

* Section 5 includes details of our thick-boundary-layer study. Re-

sults and conclusions follow in Section 6. The Appendix includes

computer-program listings and an explanation of program input and

output.

-2-



2. EQUATIONS OF MOTION

In this section we describe the Wilcox-Rubesin 3 two-equation model

of turbulence. First we summarize the equations of motion in-

cluding all closure coefficients. Then, we state the boundary

conditions appropriate to smooth and rough surfaces.

N 2.1 THE TURBULENCE MODEL

For an incompressible fluid of density, p, and kinematic viscosity,

v, we must solve the equations of mass and momentum conservation,

viz,
au 

iau- - o(1)

4..ax 1I

uaui l~ a [ aui 1
ujx al [ + (2)axj Pax i  ax ax i1j]

where steady flow conditions have been assumed. In Equations (1-2),

ui and xi denote velocity and position vector, p is static pressure

and Tij is the Reynolds-stress tensor. To close the system, Tij is

,ssumed proportional to the mean strain rate tensor, Si , wherefore

i 2ES -2k6 (3)ij 3 IJ

where aui ui
ij + x (14)

The quantity k is turbulent mixing energy and c is kinematic eddy

viscosity. The latter is defined in terms of k and the turbulent

dissipation rate, w, by

e = y*k/w (5)

where y* is a closure coefficient. Finally, the turbulence para-

meters k and w satisfy the following equations.
ak = au I [(v + G'E) aB-Lk

u--wk + (6)-jax i ij ax Tx~L ax iJ

-3-



DW2 2  kW-21w w2 -
W+ 2cy 2 j 3 X~ + V+ (7)

j k ' jxx kaxx

where k is the turbulent length scale defined by:

= k / (8)

0 Equations (5-7) contain six closure coefficients, viz, Y, , y, y*,

a and a*. The values of these coefficients have been determined

from very general arguments based on widely observed properties of

turbulent flows. The values used in the present study are:

= =3/20 ;* = 9/100

a = k * - (9)
y* = 1 - (lX 2 )exp(-ReT)

yy, = LO [l_(lX2)exp(ReT//4)]9 1
where X

In Equations (9), the quantity ReT is the Reynolds number of the

* turbulence defined by

ReT - k - k (10)
TV WV

* 2.2 BOUNDARY CONDITIONS

Application of the no-slip boundary condition yields

* at solid boundaries (11)

k =0

The boundary conditions for w appropriate to smooth and rough sur-14
faces have been shown by Wilcox and Traci to be

20v
W 2 as y - 0 ; Smooth Surface

By2 2 (12)

L at y = 0 ; Rough Surface

where uT is friction velocity and S is a function of dimensionless

-4-
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roughness height k+ u k/v defined by

S = (36/k+) 2 + (8/k+) (13)

Equations (1-13) completely define the turbulence model and

surface boundary conditions. All analysis in this project has

been done using Equations (1-13).

|-5-
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3. NUMERICAL CONSIDERATIONS

* Because our primary interest in this project is in three-dimensional

boundary layers, a substantial effort has gone into devising an

accurate, stable and efficient numerical procedure for solving

Equations (1-13) in the 3-D boundary layer. Few computer programs

• have been developed with sufficient generality for arbitrary ship-

hull applications and we have, in effect, developed such a pro-

gram from scratch.

Cur original starting point was a generalized version of the 3-D

boundary-layer program developed by Cebeci, et al 5 . The r. rical

procedure embodied in the program is based on Keller's 6 " x Method".

After a great deal of numerical experimentation and frust tion,

hwe have concluded that the Box Method is incompatible wit 2

turbulence-model equations.

This is not to say the Box Method is deficient as a numerical scheme.

On the contrary, the method has proven to be very efficient and very

* accurate in many applications. However, advanced turbulence models

such as the one being used often require special numerical treatment.

Over the years, we have found that many excellent, proven, numerical

schemes just don't work well in solving the equations attending

* such a model. We now know the Box Method falls into this category.

To remedy this problem, we have completely rewritten the program.

It now embodies a numerical method which has proven compatible with

* the turbulence model. In the following sections we first discuss

the new numerical method. Next, we show typical numerical results

for a flat-plate boundary layer, including comparisons with exper-

imental data. Finally, we present results of a numerical accuracy

study.

3.1 THE NUMERICAL PROCEDURE

For many years we have obtained accurate two-dimensional boundary

layer solutions for our model equations using the classical Blot-

tner 7 method. Hence, we decided to extend the method to three

.-6-
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dimensions in hopes it wo,' t=Lain its desirable statility a ,u

,- accuracy cbl-teristics. Before embarking on such a major re-

programming effort we made a brief review of Blottner's more re-

.* cent work. We found that, as an improvement to his original pro-

cedure, Blottner8 has devised his "Variable Grid" algorithm. This

• revised method offers far greater accuracy than his original metho,.

particularly for very coarse finite-difference grids. We decided

to use the improved algorithm.

In essence, the "Variable Grid" method uses a conservation for,

treatment for diffusion terms. That is, in the original Elottner

method, diffusion terms must first be expanded according to:

a .. 3 u D2u 3 U (14)

-Y a -, E 2- +

ID'-y

- .'" Then, central difference approximations are used for au/ay, 3c/y,

and a 2 u/ay 2  By contrast, in the improved Blottner method, we write

directly (subscripts denote mesh point number):

E Ju + 6u CJ 6 u
ay a y(Jyj +Yj-l( -  (15)

6u = (u - u )/Ay (I)

and similarly for (6u)j . The quantity Ay. = YJ+l - YJ is the

incremental change in the normal coordinate y. As will be shown

in Subsection 3.3, this straightforward modification permits much

greater stretching of the grid normal to the surface than is pos-

sible with the original Blottner method.

Thus far, we have spoken only of the direction normal to the sur-

face. Because the three-dimensional boundary-layer equations have

a real characteristic which is not necessarily aligned with the

freestream flow direction, any accurate numerical procedure must

be consistent with the attending zone of dependence. The original

Box Method does not treat this problem properly and to avoid

@01 ................................................. t.i:.s s rn,. . J2- 2..



0

future difficulties we decided to accomodate the zone-of-dependence

feature in the revised numerical scheme. In an unpublished study,

Wilcox and James9 devised a family of explicit, unconditionally

stable marching methods which potentially could deal with this

problem. A review of that study showed that most of the family

*were of first-order accuracy. However, one of the most promising

of the family is second-order accurate. Another brief review of

boundary-layer literature showed that this scheme has been used by

many others in three-dimensional boundary-layer applications. The
10

scheme is attributed to Krause1 . We have opted to use Krause

scheme in the revised program.

The essence of the Krause procedure is the manner in which cross-

flow convective terms are treated. As an illustration, the tern

wau/Dz (where u and w denote streamwise and crossflow velocity

*components and z is the crossflow coordinate) is discretized

according to: ui k+l - Ui-l~k ui

(wau/3z)i uI 1  k +-uk i~k-1)w i . k i -~ A z k A z( 1 7 )

where i and k denote mesh point number in the x and z directions,
respectively, Azk = Zk+ 1  Zk, and the finite-difference molecule

is as shown below.
0

(i-l,k+l) Centered Here

(i- ,k)

6 (i(k-1)

This scheme is unconditionally stable for positive crossflow

(w > 0) and conditionally stable for negative crossflow (w < 0),

the stability condition being:

* wAx
WAX> -(
uAz

-8-
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Thus, for equally spaced mesh points (Ax = Az), this scheme is

stable for negative crossflow angles up to 45 degrees from the

streamwise direction.

3.2 PRELIMINARY TEST OF THE REVISED PROGRAM

A key difficulty encountered with the Box Method was the presence

of large round-off errors in the equation for W 2 . Even when we
devised a special procedure to eliminate these errors (caused by

the numerical method's inability to accurately compute the rapid

variation in W 2 as y - 0), nontrivial oscillations in properties

such as skin friction remained. All of these difficulties were

encountered for the simplest boundary-layer of all, the two-

dimensional flat-plate (constant pressure) boundary layer. Hence,

as a preliminary test of our revised 3-D boundary-layer program,

which we will refer to as EDDY3, we focus on the flat-plate boundary

A layer. We have done two somputations, the first for a turbulent

case and the second for a transitional case.

The first computation was initiated from approximate profiles at

a plate-length Reynolds number, Rex, of one million. Using 40

equally spaced streamwise steps, the computation proceeds to a

plate-length Reynolds number of five million. This means the ratio

of streamwise stepsize to boundary-layer thickness ranges from 1.3

to 6.8. Such large steps are comparable to those used in mixing-

length computations. Only 61 mesh points were used normal to the

surface with the grid-point incremental spacing increasing in a

geometric progression with a progression ratio of r = 1.11.

Figure 1 compares computed skin friction, cf, and momentum thick-

neSS Reynolds number, Re., with the Karman-Schoenherr correlation.

As shown, both cf and Re0 virtually duplicate the correlation.

Figures 2 through 4 compare computed velocity, turbulent dissipa-

tion rate and turbulent mixing energy profiles with corresponding

exact theoretical asymptotic sublayer and wall-layer (log region)

profiles. In all cases, the numerical predictions clearly fall

-9-
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very close to the asymptotic profiles, thus verifying the accuracy

of the revised numerical procedure in the absence of crossflow.

For our second test we begin with laminar flow and integrate all

the way through transition to test whether cf oscillations attend

such a computation. As shown in Figure 5, the revised program

displays no such oscillations. Again, the geometric progression

ratio used was r = 1.11.

In conclusion, the success achieved in these two flat-plate cases

leaves us confident that we have a numerical procedure which is

* at once stable and accurate. While these computations fail to

test the program's ability to handle reverse crossflow, the ship-

hull applications of Section 4 indicate no difficulties are en-

countered, even with very large crossflow velocities.

2.3 NUMERICAL ACCURACY STUDY

Before proceeding to more complex applications, it is instructive

* to examine the sensitivity of EDDY3 computations to grid-point

spacing. One of the most remarkable features of the revised

program is that in past two-dimensional computations, at least 200

mesh points would have been needed to achieve mesh-independent solu-

* tions for an Re x of five million. This is true because the original

Blottner method is of questionable accuracy for values of r in ex-

cess of 1.04. To test the program's accuracy, we performed a series

of turbulent flat-plate boundary-layer computations in which r was

* increased all the way to 1.40. To establish a baseline solution,

we used our two-dimensional program to compute the flow of Sub-

section 3.2 with 200 mesh points and with r = 1.03.

Figure 6 shows the percent error in skin friction as a function of

the progression ratio r. Remarkably, even with an r as large as

1.40 the c error is only 8.5 percent. Values of r less than 1.14

yield skin friction errors less than 2 percent.

0

-14-
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t" Figure 7 recasts the percent error in skin friction in terms of

.. mesh point number. As shown, solutions are more or less mesh

i independent beyond about60mhpons
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4. SHIP-HULL APPLICATIONS

We turn now to computation of the three-dimensional boundary layer

on two ship hulls, viz, the SSPA Model 720 and the HSVA Tanker.

These are the two test cases included in the 1980 SSPA-ITTC
11Workshop on ship boundary layersl . For the SSPA Model 720 we

perform three separate computations to test EDDY3's ability to

handle reverse crossflow and sensitivity for grid point spacing.

Then, the HSVA Tanker computation is done just once on an optimized

grid.

The surface finite difference grid is nonorthogonal and PROGRAM

SHPMSH (see Section A.1 of the Appendix) is used to generate the

grid. Also, PROGRAM VELOC (see Section A.2 of the Appendix) is

used to interpolate inviscid velocities onto the nonorthogonal

grid.

4.1 SSPA MODEL 720

4.1.1 Effect of Girthwise Integration Direction

All of the computations performed use the Workshop-supplied Douglas-
Neuman 1 2

Neumann1 inviscid velocity distribution. In all cases, computation

>2 is initiated from fully-turbulent boundary-layer profiles at 2x/L =

-0.6 (L is the hull half length). The profiles used match the

measured momentum thickness and skin friction. For the computations

of this Subsection, the finite-difference mesh consists of 51

equally-spaced points extending from 2x/L = -0.6 to 2x/L = 0.9,

11 equally-spaced points (in terms of girth) in the girthwise direc-

tion, and an average of 40 points normal to the surface. Thus, the

mesh consists of about 22,000 points. Consistent with the Douglas-

Neumann computation, both the keel line and the waterline have

been treated as symmetry planes.

To further test the program's numerical formulation, we perform

the computation in two different ways. First, we perform the

girthwise integration starting at the keel and integrating toward

the waterline on each streamwise plane (section). Then, we repeat

the computation integrating from waterline to keel. Doing both

-19-



2
computations checks numerical-algorithm consistency and the pro-

gram's ability to handle reverse crossflow.

Inspection of key flow properties shows virtually no difference

between the two solutions through the entire flowfield. This

confirms that the program is indeed able to handle reverse cross-

* flow in a stable and accurate manner. It also confirms that over-

all the algorithm is consistent witi. the parabolic nature of the

boundary-layer equations.

4.1.2 Effect of Mesh Refinement

In the next computation we use 81 mesh points in the streamwise

direction, half of which lie between 2x/L = 0.5 and 2x/L = 0.9.

A total of 21 equally-spaced points lie in the girthwise direc-

tion with an average of 75 points normal to the surface. This

mesh consists of about 128,000 points, almost six times the

number used in the computations of Subsection 4.1.1. The girth-

wise integration is carried out from keel to waterline.

A detailed comparison of corresponding flow properties for the

22,000- and the 128,000-mesh-point computations shows that over-

all flow properties differ by about 3 percent. Even in regions

* of rapid change, differences never exceed 5 percent. These ob-

servations are consistent with our accuracy study for the flat-

plate boundary layer which indicate that, on the one hand, using

40 points normal to the surface yields a little over 3 percent

* error while, on the other hand, using 75 points results in about

0.6 percent error. The 5 percent discrepancies almost certainly

attend the difference in streamwise resolution between the two

computations.

Results of this numerical test indicate there is little point in

using a mesh as fine as the one with 128,000 points if economy

is a factor. That is, our 22,000-point computations require ap-

* proximately 20 minutes on a UNIVAC 1108 while the 128,000-point

computation requires about 90 minutes. Note that the increase
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in machine time is slower than linear because use of the finer

.- mesh is attended by fewer iterations in the solution procedure

at each mesh point.

4.1.3 Comparison of Computed and Measured Momentum Thickness

In all three computations, we predict boundary-layer separation

over a portion of the hull beyond 2x/L = 0.77. Although no sep-

aration appears to have been observed experimentally, one should

also note that the experimentally observed boundary layers did

not experience as strong an adverse pressure gradient as those

*predicted by the Douglas-Neumann computation.

Figure 8 compares computed and measured momentum thickness, e,

on three lines along the hull. Line A is the keel line. Line B

is a line well below the waterline where the boundary layer is

more-or-less of the classical "thin" variety. Line C is closer

to the waterline and the boundary layer approaches the more com-

plicated "thick" structure.

Along Line A, the boundary layer is truly three dimensional as

exhibited by its curious behavior approaching the stern. Speci-

fically, despite entering a region of adverse pressure gradient,

the momentum thickness decreases. This behavior occurs because

of large flow divergence near the stern. While the computed 0

lies about 25 percent above measured values, note that our pre-

dicted curve is much closer to the data than those of virtually

all Computors in the SSPA-ITTC Workshop on Ship Boundary Layers,

most of whose curves were high by a factor of two!

Along Line B, we exhibit somewhat larger differences from the

measured values. Computors in the Conference generally came

closest to experimental data on this line. Our prediction is

about average relative to Conference participants'.
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Figure 8. Comparison of computed and measured momentum~
thickness for the SSPA Model 720.
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On Line C, our predicted curve follows measured values quite

closely up to about 2x/L = 0.5; beyond this point we predict a

slower-than-measured increase in momentum thickness. This is

unsurprising as no provision has been made to accomodate any

"thick" boundary-layer phenomena. Our prediction is much closer

-' to the data than most Conference participants'.

4.2 HSVA TANKER

As with the SSPA Model 720, we use the Workshop-supplied Douglas-

Neumann inviscid velocity distribution. Computation is initiated

from fully-turbulent boundary-layer profiles at 2x/L = -0.80. Again,

the profiles used match the measured momentum thickness and skin

friction. The finite-difference mesh consists of 70 points in the

streamwise direction extending from 2x/L = -0.80 to 2x/L = 0.90,

15 equally-spaced points (in terms of girth) in the girthwise

direction, and an average of 60 points normal to the surface. Figure

9 compares computed and measured momentum thickness on three sections,

viz, for 2x/L = -0744, 0.291 and 0.502. The numerical boundary

layer separated over a substantial portion of the hull at 2x/L = 0.75,

so that comparison with momentum-thickness data at 2x/L = 0.884 is

not possible. Note that the abscissa, z, is the nondimensional

girth with z=0 on the keel and z=l on the waterline. Overall

differences between computed and measured 6 are similar to those

obtained for the SSPA Model 720.

In summary, we have tested EDDY3 on two ship hulls and encountered

no significant numerical difficulty. Separation on both hulls is

almost certainly caused by the use of the Neumann inviscid velocities,

so separation is discounted as a numerical problem. The differences

observed between computed and measured momentum thickness, although

generally much smaller than those of Workshop participants, are

too large for general engineering applications. Thus, our predictive

ability requires further improvement before a ship designer can

apply a program such as EDDY3 with any degree of confidence.

k"
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thickness for the H-SVA Tanker.
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Inspection of Figures 8 and 9 indicates our predictions differ

from measurements most significantly as we approach the stern.

This is unsurprising because, on the one hand, we expect the

boundary layer to become "thick" so that classical thin-shear-layer

approximations become suspect while, on the other hand, our compu-

tations have been done with classical thin-shear-layer approxima-

tions. In the next section, we address the question of how well

our model equations predict properties of "thick" boundary layers

if we abandon the thin-shear-layer limit.
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5. ANALYSIS OF THE THICK BOUNDARY LAYER

In this section we address the thick boundary layer by computing

three axisymmetric flows in which boundary-layer thickness becomes

large relative to the body radius. First we use perturbation methods

to show that model equation solutions are cornsistant with the Rao

and Richmond scaling laws for axisymmetric boundary layers. Then,

we compute flow over a thin cylinder (wire) and compare computed

and measured flow properties. Next, we compute flow over two

axisymmetric bodies using both measured surface and boundary-layer-

edge pressure distributions and deduce that including ap/ay in a

thick boundary layer computation will account for most of the observed

differences from thin layers. Finally, we devise an integral method

for computing ap/3y in a thick axisymmetric boundary layer.

5.1 PERTURBATION ANALYSIS

The two most noteworthy scaling schemes for axisymmetric boundary

layers are those of Rao1 3 and Richmond In Subsections 5.1.1

and 5.1.2 we use perturbation methods to show that the Wilcox-

Rubesin model is consistent with Rao's scaling in the viscous sub-

layer and with Richmond's scaling in the wall layer.

5.1.1 Sublayer Scaling

For an axisymmetric boundary layer with constant pressure, close

to the surface the Wilcox-Rubesin model simplifies to:

r(v + u)du = r u2 (19)
1 ddk

.4 d( v + = y du 2 -"wk (20)
FrT dr di r

drF(v + acrw du2 + 2a (1  W (21

where v and c denote molecular and eddy diffusivity, r is radial

distance, u is velocity, r is body radius and uT is friction

N, velocity.
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Deep in the sublayer, the eddy viscosity can be neglected, i.e.,

C << v. Then, if we nondimensionalize according to:

K = k/ut

W = VW/u

L = u T/v
(22)

+
0  UTro/

+ lo r/ o
Y = 0 log (r/r0)

substituting Equations (22) into Equations (19-21) yields

dU/dY = 1 (23)

d2K/dY 2 = y*K/W - e*WKexp(2Y/r ) (24)
0

2 W2 /dy2  yW - aW 3exp(2Y/r ) - 2a(dL/dY) 2W3  (25)

4For the most experimental measurements made on flows of this type

the non-dimensional radius, r0 , is very large so that

exp(2Y/r) = 1 + 0(1/r ) (26)

Thus, in the limit r+ >> 1, Just as in the two-dimensional case it

is easily verified that the production terms, y*K/W and yW, and

the term in Equation(25) proportional to (dL/dY)2 are negligible.

The solution to Equations (23-25) is then trivially shown to be

U= Y

W= 20/(SY 2 ) (27)

E ~y4

Writing the dimensional equivalents of Equations (27) yields the

following:

-27-
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u/u = r+ log(r/r oI.T 00

VW/u 2 20v/IB(log r4)2 (8
+ r (8

k/u' (ro+log r-)4

* The velocity profile predicted in Equations (28) is precisely that

given by theRao scaling. To test the limiting u/u asymptotic form,

we have examined results of a numerical computation for flow past

a thin cylinder aligned axially with the freestream (complete details

* of the computation are given in Subsection 5.2). For the data sum-+

marized below in Table 1 we have r0 = 667.8. As indicated, althougho+

the effect is small because of the large value of r0 , the numerical

u/u T agrees with the values predicted by the first of Equations (28)

* to three decimal places. Thus, the analysis is self consistent.

Table 1. Comparison of Computed & Predicted

* Sublayer Velocity Profiles

u Y/v r+ log(r/r) (u/U )
T______ o o T Computed

0.6056 0.6053 0.6054

* 1.235 1.234 1.234

1.889 1.886 1.886

2.568 2.563 2.563

3.2-74 3.266 3.266

* 4.007 3.995 3.995

4.769 4.752 4.752

5.1.2 Wall-Layer Scaling

We turn now to the wall layer, viz, the region sufficiently close to

the surface for convective terms to remain negligible yet far enough

that the molecular viscosity can be neglected relative to the eddy

O viscosity. This is the classical law-of the wall region for planar

boundary layers. We again nondimensionalize according to Equations

-28-
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(22) with the exception that our normal coordinate is redefined as

follows.

Y = Y+(1 + y /r ) where y = (r - r ) (29)
0 0

The wall layer is most conveniently analyzed by treating U as the

dependent variable. Dropping molecular viscosity in Equations

(19-21)i the equations for the wall layer are:

(1 + 2Y/r ) (K/W)dU/dY = 1i ,g0
q  (30)

a*d2 K/dU 2 = a*(l + 2Y/r )K2 
- 10 ~(31)

ad W2 /dU 2 = a(l + 2Y/r+)KW2 - yW2 /K + 2o(dL/dU)2 W'/K (32)

In the limit of very large r+ these equations are identical to those
0

for planar boundary layers. From Equation (31) there follows

immediately:

E = 1//- + 0(1/r 0) (3)

Substituting Equation (33) into Equation (32), the solution for W

becomes (noting that the closure coefficients have been chosen to

insure that y =61/ - 20K 2 //a where K is Karman's constant):

W exp(- KU)K = <--- (34)

Finally, substituing Equations (33-34) into Equation (30 )yields

the velocity profile, viz,

=U lY + 0(1/r ) (35)
K 0

or in dimensional form we have:

u/u i logy+ + (36)

where

-29-

-. 4-°



~++

Y = y (1 + y /2r o) (37)

Equations (36-37) are precisely those of the Richmond scaling.

In Figure I we compare our numerical predictions for the thin clinder

computation of the next subsection with Equations (36-37). In the

comparison we have included Coles' wake component so that the complete

velocity profile becomes:

Tu = 1 log + + B + 2i sin2(T ) (38)
T K K 2-4

where we use K = .41, B = 5.0 and = -.14. Note that the inferred

wake strength i of -.14 implies that the transverse curvature effect

* is similar to a favorable pressure gradient. This point is consistent

with the observations of Patel1l The overall agreement between the

numerical profile and Equation (38) verifies the perturbation analysis.

5.2 FLOW PAST A WIRE

In this subsection we present results of a numerical computation for

flow past a "wire", viz, a thin cylinder aligned axially with the

freestream. The case we have chosen is that experimentally investi-

gated by Yulin which the Reynolds number based on cylinder radius is

Re = 15,250 (39)

• Unit Reynolds number for the flow is 1.83105 and measurements were

made between axial distances, x, from 2 feet to 8 feet. At x = 8

feet the ratio of boundary layer thickness to r0 is approximately 2

so that this flow includes a moderately "thick" boundary layer.

Computation was initiated at x = 0 from laminar starting conditions.

The freestream turbulence intensity was adjusted to yield a match

between computed and measured momentum thickness at x = 2 feet.

* Figure 11compares predicted boundary layer thickness, 6, momentum

thickness, e, shape factor, H, and skin friction, cf, with corres-
ponding measurements. The data shown for 6, e, and H are the original
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data reported by Yu. The skin friction data have been obtained from

Clauser plots rather than using Yu's Preston tube measurements which

are thought to be in error1 5 .

As shown, computed and measured shape factor and skin friction differ

* by less than 5%. Computed boundary-layer thickness is about 10%

* lower than measured while the numerical momentun thickness ultimately

%] is about 15% lower than measured. The fact that our skin friction

is so close to the measured values while the momentum thickness

discrepancies are much larger leaves us with the same concern exores-

sed by Patel 7 regarding the two-dimensionality of the experimental

flowfield. The figure also shows computed results for a corresponding

planar boundary layer. As indicated, the primary effects of transverse

curvature are to increase skin friction and momentum thickness and to

decrease boundary-layer thickness and shape factor.

Figure 12 compares the computed and measured velocity profiles at the

axial location x = 8 feet. With exception of the points lying between

Y+ = 150 and 400, the computed velocity profile fares smoothly through
+

the data. Even for the four data points lying between y = 150 and
400, the maximum difference is less than 5%. Inspection of the

profile for the corresponding planar case shows that the effect of

transverse curvature is to alter the slope of the profile, a trend

consistent with that displayed in the data.

Thus, for this constant-pressure flow, the model equations pre-

dict flow properties which are reasonably close to corresponding

measurements. As will be seen in the next subsection, thick

boundary layers experiencing an adverse pressure gradient cannot

be as accurately computed if we restrict ourselves to classical

thin-shear-layer approximations.
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5.3 BODIES WITH ADVERSE PRESSURE GRADIENT

In this Subsection, we make a "first cut" at two thick axisymmetriLc

boundary layers with pressure gradient and streamline curvature.

We emphasize that our computations are indeed only a first cut as

S.. experimental measurements indicate nontrivial variation in pressure
across the boundary layers while we have used a standard boundary-

layer program which assumes Dp/3y = 0. In order to provide a first

estimate of the importance of having variable pressure across the

layer, we have done both computations first using the measured edge-

*. pressure distribution and then with the measured surface-pressure

distribution.

The two cases considered are the "modified spheroid"l8  and the

"low-drag body ' 1 9 experimentally evaluated by Patel. In Subsection

5.3.1 we compare computed and measured integral properties. Sub-

section 5.3.2 compares computed and measured velocity and Reynolds

" shear-stress profiles for the low-drag body. Next, in Subsection

.5.3.3, we compare predicted peak eddy viscosity and mixing length

with corresponding measurements. Finally, Subsection 5.3.4 examines

the predicted effect of streamline curvature for the modified

spheroid.

5.3.1 Integral Properties

Figures 13 and 14 compare computed and measured integral properties

for the two axisymmetric bodies. Note that the modified spberiod

computation has been initiated at x/L = .662 using the experimentally

measured profiles to establish starting profiles. Reynolds number

based on body length is Re = 1.26.10 6 For the modified spheriod,L
boundary-layer thickness, 6, exceeds the body radius, r , for all

points beyond about x/L = .925. Similarly for the low-drag body,

computation has been initiated at x/L = .6, again using the experimen-

tally measured profiles for starting conditions. Reynolds number,"-" 06
, Re is 1.2010 while 6 exceeds r beyond about x/L = .85.

L 0

Focusing first on the modified spheroid, note that the boundary layer

.4 -35-
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Wi
remains attached to x/L .99 when we use Cpe and separates at x/L =

.942 when we use C pw* For both pressure distributions, the predicted

•growth of the boundary-layer thickness is reasonably close to the

measured trend with the experimental data beyond x/L = .9 lyin - et.ee

the two computed curves. Similarly, the experimental skin-friction,

* Cf, data tend to fall between the Cpe and Cpw curves, particularly in

* the region beyond x/L = .9 where 9p/ay is known from measurements to

be nontrivial. On balance, the CPw computation predicts momentum-

thickness, e, and shape-factor, H, distributions which are closer to

the corresponding measurements in the interesting (i.e., x/L>.9)

* portion of the flow.

Turning now to Patel's low-drag body, note that the experiment was

designed to avoid any complications attending incipient separation,

such as that observed for the modified spheroid. As shown in Figure

14 neither computation predicts separation and differences between the

two computations are less dramatic than in the modified spheroid case.

As with the preceding computation, predicted overall growth of the

boundary-layer thickness is quite close to the measured growth. For

both computations, computed and measured Cf differ by less than 12'.

As with the modified spheroid, differences between computed and measured

e and H distributions are smallest for the Cpw computation.

* In summary, comparison of predicted and measured integral properties

indicates that the experimental 6 and Cf fall between the limitinE Cpe

and Cpw computations. Predicted e and H distributions are clcest to

the corresponding measurements when we use Cp = Cpw. Hence, it appears

* that in taking a closer look at our predictions, the Cpw cov.putations

will provide more insight than those using Cpe'

5.3.2 Velocity and Reynolds-Stress Profiles
S

Because the modified spheroid computation separates, there is little

positive information to be gleaned from detailed comparison of computed

and measured profiles. Hence, in this Subsection, we focus our atten-

tion on the low-drag body.

Figure 15 compares computed and measured velocity profiles at four axial
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stations, viz, x/L = .80, .88, .92, .96. As shown, the computed

boundary layer has experienced stronger deceleration than in the

experimental case. This is unsurprising as we have used the surface-

pressure distribution throughout the layer which is attended by a

larger gradient. Clearly, the overall growth matches that measured.

Even at x/L = .96, differences between computed and measured velocities

are less than 7% of scale.

Figure 16 compares computed and measured Reynolds shear-stress profiles.

Discrepancies between the profiles at x/L = .80 are surprising, parti-

cularly in the light of the close agreement between the velocity

* profiles at this station. Overall, the numerical shear-stress profiles

are within about 15% of scale of the measured profiles. The shapes

and fullness of the experimental profiles are reasonably well simulated

throughout the tail region of the body.

5.3.3 Turbulence Properties

In this subsection we concentrate on two key features of the turbulence

field which have not been accurately simulated with simpler turbulence

0 models. Specifically, we examine the variation of peak mixing-length,

zmax' and eddy viscosity, cmax' Figure l7compares our CPw predictions

with values inferred from Patel's data. As shown, for both bodies,

model-predicted £ and e fall off rapidly as we approach the tail•max max

of the body. Considering the inaccuracies attending differentiation

of the experimental data required to infer kmax and max' our predic-

tions must be considered well within the error band of the data.

• 5. 3 .4 Streamline-Curvature Effects

To obtain an estimate of the effects of streamline curvature on our

predictions, we have rerun the Cpw modified-spheroid computation

* without account for streamline curvature. All results presented in

Subsections 5.3.1-5.3.3 include the Wilcox-Chambers2 0 curvature modi-

fication to the turbulent mixing-energy equation. Figure 18 shows effectz

on the velocity profile at x/L = .93. For the computation with no

* curvature, the numerical profile passes through all of the measured

points. With curvature included, the velocity profile shows additional

deceleration, consistent with the effect of convex curvature. Note

..-............. ........................ , . ,-,.......
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that the close agreement between results of the no-curvature computa-

tion and the experimental data is fortuitous as the numerical pressure

* gradient is larger through much of the boundary layer than it is in

the experimental case. Overall, the effect of curvature for the

modified spheroid is small, giving rise to changes in integal pro-

perties of less than 5%

In summary, results of these two computations indicate the

*' following.

1. With no modifications to the Wilcox-Rubesin
turbulence model, computed boundary-layer

*0 thickness virtually duplicates measured
thickness for both bodies.

2. Performing the computations with first the
measured boundary-layer-edge pressure

* distribution and then with the measured
surface pressure distribution (neglecting
pressure variation across the layer in each
computation) yields skin-friction distribu-
tions which overall fall above and below
measured skin friction, respectively.

3. Shape factor and momentum thickness are in

closer agreement with corresponding measure-
ments when the wall pressure is used.

S4. For one of the two bodies, our predictions

suggest that streamline curvature plays a
relatively minor role.

Thus, we conclude that the primary differences between the "thick"

* and the "thin" boundary layer are primarily caused by the pressure

gradient across the former, i.e., Dp/3y. In the next Subsection,

we devise a straightforward method for including 3p/ay in a standard

boundary-layer computation.

5.4 PRESSURE VARIATION IN A THICK BOUNDARY LAYER

Results of the preceding Subsection demonstrate the importance of

pressure variations across a thick axisymmetric boundary layer.

Recapitulating, we found that in using a conventional boundary

~-~.-44-
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layer program, results obtained differ depending upon the pressure

distribution used. On the one hand, using the measured freestream

pressure distribution tends to underpredict momentum thickness and

to overpredict skin friction. On the other hand, using the measur-

ed surface pressure tends to reverse the situation with momentum

thickness overpredicted and skin friction underpredicted. Pre-

sumably, permitting the pressure to vary across the layer will

yield numerical predictions which fall somewhere between these

two limits. Because the experimental data lie between these two

limits, predictions should then lie quite close to corresponding

measurements. The object of this Subsection is to devise a method,

compatible with a conventional boundary-layer marching algorithm,

for predicting the pressure variation through a thick boundary layer.

In order to account for nonzero 3p/3y in a boundary layer, we must,

in principle, solve the vertical as well as the streamwise momentum

equation. For a thick boundary layer on a surface with curvature

K Patel2 1 has shown that the vertical momentum and continuity

equations are:

u 3v/Dx + hv~v/3y - (40)

P

a(ru)/Dx + 3(rhv)/Dy = 0 (41)

where u and v denote streamwise and vertical velocity components,

x and y are streamwise and normal distances,p is density, p is

pressure, r is radial distance, and h is the metric defined by

h h1+Ky (42)

The curvature, K, is understood to be positive for convex surfaces

and negative for concave surfaces.

One approach to solving for the pressure would be to discretize

Equation (40) and solve for p once v is known from the standard

boundary-layer solution. This is not very convenient when the pro-

gram is formulated in terms of Levy-Lees variables, however, and

all of our programs use these variables. As an alternative, we have
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chosen to implement an integral solution approach. Proceeding

in the classical manner, we define the following boundary-layer

thickness parameters:

Displacement Thickness ..... r6* = f6 (1-u/U )rdy (43)
0 e

U-Momentum Thickness ....... r6 = f6 (1-u/u )rdy (414)

V-Momentum Thicknessu.......rev o6 (1V/Ve )rdy (45)

where 6 is the boundary-layer thickness. Then, introducing the

following quantities:

0 6r r + 6cos€ h = 1 + K6, r 6  = f0 rdy (46)re= 0 e o r0

the integral form of Equations (40-41) is as follows.

re [hev e - U ed6/dx] + d[r (6r - 6") U e] /dx = 0 (47)

doeev]/dx - ro( r -*)Uedve/dx + Krou e *-e)

f h (ap/3y)rdy

In order to make further headway we must postulate profiles for v
18,19and p. Close examination of data for two thick axisymmetric bodies

shows that at all stations for which data were tabulated, both v

and p can be closely approximated with simple linear profiles, viz,

v = v (y/6) and P = Pe + (pw-Pe)(l-y/6 ) (49)e ee

Thus, the definition of 0 is altered in the obvious way whilev

Equation (48) simplifies to:

dro/dx - r(6 6*)U dV/dx + rou'(6 r6*-e)

Lrouevevx r r e ve oe(6

(roUt,/26)[ 6 +3K6(6-6/4)] (Cp CP (5:

-46-
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* In order to test this formulation, we have applied Equations (L47
Sand 50) to three flows, in each case working with measured flow

16
properties. The three cases are Yu's flow over a wire, Patel's

modified spheroid 18 and Patel's low-drag body 19, respectively.

For Yu's wire flow, we find that the difference between edge and

surface pressure coefficients is of order 10- , as would be ex-

pected for this constant pressure case. Figures 19 and 20 compare

predicted and measured pressure coefficient difference for the

.vtwo Patel bodies. Considering the numerical crudeness attending

differentiation of the data, particularly v the agreement

" between the predictions of Equation (50) and the measured C~p
difference is excellent.

Note that Equations 47 and 50 are not restricted to axisyr.metric

boundary layers. The limiting two-dimensional forms fcllow by

- formally replacing re by r° and 6 by 6. The equations can tee 0 r
generalized in a straightforward manner for three-dimensional

boundary layers.

-47
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Figure 19. Comparison of predicted and measured pressure
differential for Patel's modified spheroid.
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6. DISCUSSION

1 We have developed a new three-dimensional boundary-layer program,

EDDY3, suitable for application to arbitrary ship hulls. The pro-

gram embodies the Wilcox-Rubesin two-equation turbulence model and

uses an accurate, efficient numerical procedure based on the Blot-

tner "variable-grid" method coupled with the Krause explicit mar-

ching algorithm.

Results described in Sections 3 and 4 show that very accurate num-

0 erical results can be obtained with relatively coarse finite-dif-

ference grids. Computing times are quite modest as a complete ship
hull computation can be done with about a half-hour of UNIVAC 1108

execution time. This corresponds to approximately three minutes on

a CDC 7600 computer. Additionally, the numerical algorithm dis-

plays no noticible difficulty when reverse crossflow is present.

Comparison of computed and measured flow properties for the SS7A

*O Model 720 and the ESVA Tanker show that, on the one hand, our Ere-

dictions are quite a bit closer to measurements than those repcrted

in the 1980 SSPA-ITTC Workshop on Ship Boundary Layers. On the

other hand, differences are too large, particularly near the ship

O stern, for us to claim the problem is solved. The fact that the

boundary layer becomes "thick" approaching the stern is no doubt

the cause of the differences observed between theory and experiment.

o Our analysis of thick axisymmetric boundary layers in Section 5

shows that, in order to obtain accurate "thick" boundary-layer pre-

dictions, accounting for the normal pressure gradient, 3p/Dy,

probably is all that is needed above and beyond conventional thin-

40 shear-layer approximations. Streamline curvature variation appears

to play a relatively minor role in the "thick" boundary layer.

Additional research is needed to confirm the importance of n in

ship-hull computations. The formalism developed in Subsection . '

-50-
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can be easily generalized for a 3-D boundary layer and should be

included in EDDY3. We could then repeat the two ship-hull comr-

putations of Section 14 to confirm our hypothesis. Additionall,,

it would be instructive to use measured freestream flow conditions

in the computations.
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APPENDIX: PROGRAM LISTINGS

This appendix has been ommitted in the interest of economy.

-l It contains complete program listings and input/output descrip-

tions for the three programs SHPMSH, VELOC and EDDY3. To obtain

0 a copy of this report including the Appendix, contact either the

David W. Taylor Naval Ship Research and Development Center or

DCW Industries, Inc.

0

0
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